
1 Cones of K3
The R-vector space NS(X)R is ρ-dimensional with quadratic form on it of signature (1, ρ − 1). The geometry of a

K3 ( even for any projective variety ) is mainly controlled by its various cones. Recall

Definition 1.1. Let X be a smooth projective surface over C, set

1. the positive cone of X to be
Pos(X) := {α ∈ NS(X)R|α2 > 0}.

2. the ample cone Amp(X) ⊂ NS(X)R is generated by ample classes (i.e., those c1(L) for an ample line bundle L
on X).

3. the nef cone
Nef(X) := {α ∈ NS(X)R | α.C ≥ 0 for any irreducible curve C ⊂ X}

4. the effective cone
Eff(X) := {

∑
finite

ai[Ci] | Ci ⊂ Xeffective curve and ai ∈ R>0}

5. the Kahler cone KX ⊂ H1,1(X,R) := H2(X,R) ∩H1(X,ΩX) consists of all Kahler classes.

It is easy to see from the definition that Pos(X), Nef(X) and Amp(X) are all convex cone in NS(X)R. By the
definition, and Nef(X) is dual to Eff(X).

Theorem 1.2. (Nakai-Moishen-Kleiman’s ampleness criterion) Let X be a smooth projective surface over C and
LPic(X), then L is ample if and only if

L2 > 0, L.C > 0 for any irreducible curve C ⊂ X.

In particular, this shows
Amp(X) = Int(Nef(X)) ⊂ Amp(X) = Nef(X)

where taking interior Int() and closure () are under the Euclidean topology of NS(X)R.

Now we turn to the case X is a K3, where the beautiful geometry of K3 gives a much simpler characterization of the
ample cone as follows

Theorem 1.3. Let X be a K3, then

Amp(X) = {L ∈ Pos(X) |L.C > 0 for any C ∼= P1 } (1)

Proof. Note that for an integral curve C ⊂ X not isomorphic to P1, then C2 ≥ 0. By the Nakai-Moishen-Kleiman’s
ampleness criterion (1.2), it is sufficient to show if C ⊂ X is an integral curve with C2 ≥ 0, then L.C > 0 for
any L ∈ Pos(X). As C is effective and nontrivial, then h0(−C) = 0 and Riemann-Roch formula implies h0(C) =
h1(C) + 2 + C2

2 ≥ 2.

Theorem 1.4 (Kawamata-Morrison’s cone conjecture holds for K3). There is a rational polyhedral subset II ⊂ Nefe(X)
1 which is a fundamental domain for the action Aut(X) on Nefe(X). That is,

Aut(X) · II = Nefe(X), g · II ∩ II is nonempty if and only if g = Id

Let V = VQ ⊗ R ∼= Rn+1 a real vector space with ⟨x, y⟩ := x0y0 −
n∑
i=1

xiyi. The example to keep in mind should be

V = (NS(X)R,∪) for a smooth projective surface. Under the non-degenerate bilinear form ⟨, ⟩, we can identify V with
its dual vector space V ∗ := Hom(V,R) via v 7→ lv where lv : V → V is the linear map defined by lv(w) := ⟨v, w⟩.

Definition 1.5. Let C ⊂ V be a nondegenarate convex cone.
1Nefe(X) is the convex hull of Nef(X) ∩ NS(X)Q.
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1. C ⊂ V is called homogeneous if the group

Aut(C) := {g ∈ GL(V ) | g(C) = C}

acts C transitively.

2. C ⊂ V is called self-dual if C = C∗ where C∗ ⊂ V ∗ is the dual cone defined as the interior of the set

{l ∈ V ∗ | l(w) ≥ 0 for any w ∈ C}.

3. C+ ⊂ V is the smallest convex cone containing all Q-points of C. In other words, C+ is the convex hull of VQ ∩ C.

Due to the work of Ash ([2][chapter 2]), Looijenga ([4]), there is a very useful criterion for the existence of fundamental
domain for the action of any arithmetic group Γ on a cone C ⊂ V .

Lemma 1.6. Let C ⊂ V be a homogeneous self-dual cone, then

1. Aut(C) ∼= G(R) is R-points of a reductive group G.

2. if Γ ≤ G is an arithmetic subgroup acting on C, then there is a rational polyhedral fundamental domain ∆ for C+

under the action of Γ.

Sketch of proof theorem(1.4)

First we have a group homomorphism

Aut(X) → O(NS(X)), f 7→ f∗

which gives the action of Aut(X) on cones of K3 X, whose image is a finite index subgroup.
Second, Observe that as

Pos(X) ∼= {x ∈ NS(X)R | x2
0 > x2

1 + · · · + x2
ρ−1}+

where x0, · · · , xρ−1 is a R-basis for the real vector space NS(X)R. Thus, Aut(Pos(X)) = G(R) where G ≤ O(NS(X)).
So it is easy to check that Pos(X) is a homogeneous self-dual cone. Now apply the criterion (1.6) for the cone
C = Pos(X) ⊂ NS(X)R, we can get a rational polyhedral cone ∆ for the action of O(NS(X)) on Pos(X)+, where
Pos(X)+ is the cone spanned by effective positive classes since Pos(X)+ is the convex hull of Pos(X) ∩ NS(X)Q.

The last step is to use the Weyl group

W := ⟨sδ : NS(X) → NS(X) | δ ∈ NS, δ2 = −2⟩

to translate ∆ inside Nefe(X).

Remark 1.7. For some K3, we have Nef(X) = Pos(X), in this case the proof will be finished after applying the criterion
(1.6). But this is not always true.

Remark 1.8. The similar structure for cones of Calabi-Yau varieties in higher dimension are conjectured by Morrison (see
[7] [6]) and Kawamata (see [3]) respectively from different perspective. But for higher dimensional Calabi-Yau varieties,
the cone conjecture is only known very special cases, e.g., for hyperkaler variety, due to Ekaterina-Verbisky [1].

Remark 1.9. According to the minimal model theory, if the Cone conjecture holds for Nefe(X) under action of Aut(X),
it will imply that there are only finite contraction X → Y up to Aut(X). This is also one of the motivations for the
cone conjecture.
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2 Moduli spaces of K3 surfaces
2.1 Crash course on DM stacks

Let Sch(S) a the étale site (i.e., a category with Grothendick topology whose covering is given by étale morphism of
schemes) and

p : X → Sch(S)

is a category fibered in groupoid over Sch(S), that is,

1. (existence of pullback) for any morphism ϕ : X → Y ∈ MorSch(S)(X,Y ) and w ∈ p−1(Y ), there is a v ∈ X and
morphism f ∈ MorX(v, w) such that p(ϕ) = f .

2. (universal properties of pullback)

Definition 2.1. p : X → Sch(S) is a stack if the following gluing axioms hold

1. (Gluing objects) for X ∈ Sch(S) and v, w ∈ p−1(X), the functor p−1(X) → Set defined by

(Y f−→ X) 7→ Morp−1(Y )(f̃(v), f̃(w))

is a sheaf where f̃ is the pullback of f , that is, for any covering {Xi → X} for X ∈ Sch(S) and any objects vi
over Xi with isomorphism

ϕij : vi|Xij
→ vj |Xij

satisfying the cocycle condition ϕij |Xijk
◦ ϕjk|Xijk

= ϕik|Xijk
, then there are objects v over X with isomorphism

fi : v|Xi → vi such that
ϕij ◦ fi|Xij

= fj |Xij
.

In other words, there is exact

X(X) →
∏
i

X(Xi) ⇒
∏
ij

X(Xij) ⇛
∏
ijk

X(Xijk)

2. (Gluing morphisms) For any v, w ∈ p−1(X) with morphism ϕi : v|Xi
→ w such that

ϕi|Xij = ϕj |Xij ,

then there is a unique morphism ϕ : v → w such that ϕ|Xi
= ϕi. In other words, the isom presheaf 2

Isom(v, w) : p−1(X) → Set, Y f−→ X 7→ Morp−1(Y )(f∗v, f∗w)

is a sheaf.

If in addition, the stack X → Sch(S) satisfies

• The diagonal morphism of stack
∆ : X → X ×Sch(S) X

is representable, qusai-compact and separated.

• There is a scheme X with an étale surjective morphism

X → X,

then we call X a Deligne-Mumford (DM) stack.

Theorem 2.2 (Keel-Mori). There is a coarse moduli space M for a DM stack M → Sch(S).

2Note that here Y
f−→ X is a S-morphism in Sch(S).
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2.2 Moduli problem for K3 surfaces

We consider the moduli problem F◦
g : Sch(C)op −→ Set defined by

F◦
g(B) := {(X,L) π−→ B | π smooth, proper,L π-ample, primitive, L2

b = 2g − 2}/ ∼ (2)

where (X,L) π−→ B ∼ (X′,L′) π′

−→ B means there is an isomorphism f : X → X′ such that

f∗L′ = L ⊗ π∗A, for some A ∈ Pic(B).

More generally, we can consider lattice polarised K3 surface

FΛ : Sch(C)op −→ Set

for any sublattice Λ ⊂ H2(K3,Z) = U3 ⊕
E2

8(−1) of signature (1,m).
Definition 2.3. A moduli functor M → Set is said to

1. fine representable by M if there is a scheme M such that M = hM where

hM : Sch(C)op → Set, hM (B) = Hom(B,M).

2. coarsely representable by M if there is a scheme M such that there is a natural transformation η : M → hM such
that there is a bijection M(Spec(C)) ∼= M(Spec(C) and for any scheme N and morphism ϕ : M → hN , there is
unique scheme morphism ψ : M → N such that the following diagram

M hM

hN

η

∀ ϕ
∃ ψ

commutes.

In both cases, there is a one to one correspondence M(Spec(C)) ∼= M(Spec(C).
Remark 2.4. One may allow the family π has singular fiber with ADE singularities at worst, in this way we get a moduli
functor Fg which is also separated. Meanwhile, one may also allow that L is just big and nef to get a new moduli functor
F′
g, but as a stack F′

g is not separated. The reason is that there are two families (X,L) and (X′,L′) over Spec(R) for
a DVR R where both generic fiber and special fiber are isomorphic, but the isomorphism can not extend to the whole
family. But both Fg and F′

g are coarsely representable and their coarse moduli spaces are isomorphic.

Remark 2.5. In AG, the fine moduli problems are rare. The most important two examples are Hilbert scheme (used to
construct moduli space of various kinds of varieties ) and Quot scheme (used to construct moduli space of vector bundles
or sheaves on a variety).

The moduli functor can be viewed as a category

Fg → Sch(S), [(X,L) π−→ B] 7→ B

fibered over Sch(S), each fiber Fg(B) is a groupoid. That is, Fg is a category fibered in groupoid. Then one can show
Fg is an algebraic stack by checking the axioms of algebraic stack and use abstract moduli stack theory to show Fg can
be coarsely represented by an algebraic space.
Lemma 2.6 ([8] Theorem8.3, Boundedness of polarised K3). If L is an ample line bundle on a K3 surface X, then L3

is very ample.

Proof. We just sketch the idea of the proof. Recall for any line bundle L with h0(L) > 1, we have a rational map given
by the line bundle

ϕL : X 99K Ph
0(L)−1 = PH0(L)∨

which is defined over X −Bs(|L|) = X − ∩
s∈H0(L)

{s = 0}.

To show the line bundle L3 giving a closed embedding into PH0(L3)∨, it is equivalent to show L3 separates points
and tangents (See Hartshone chapter 2, Proposition 7.3). i.e., we need to show
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1. (separating points) for any x ̸= y ∈ X closed points,

H0(L3) → H0(L3
x) ⊕H0(L3

y) → 0.

By the exact sequence 0 → mx ⊗ my → OX → Ox ⊕ Oy → 0, it is sufficient to show

H1(L3 ⊗ mx ⊗ my) = 0. (3)

2. (separating tangents) for any x ∈ X closed point,

H0(L3 ⊗ mx) → H0(L3 ⊗ mx/m
2
x) → 0.

Similar arguments reduce this to show
H1(L3 ⊗ m2

x) = 0. (4)

Note that for the blowup π : Y := Blp(X) → X, the direct image of sheaf

Rmπ∗OBlp(X)(−lE) =
{

0, m > 0,
mlx, m = 0.

where E is the exceptional divisor and l ≥ 0. Thus by the Leray spectral sequence for π and projection formula

Rmπ∗L3 ⊗ O(−2E) = L3 ⊗Rmπ∗O(−2E),

the vanishing results (3) and (4) follow from the following vanishing results of the numerically 1-connected divisors.
We explain the vanishing (4) as an example. Recall an effective divisor D on a smooth projective surface X is called

numerically m-connected if for any decomposition D = D1 +D2 of D into two nonzero effective divisors D1, D2, then

D1.D2 ≥ m.

We have the following basic facts:

1. C.P. Ramanujam’s lemma: If D is a numerically 1-connected divisor, then h0(D,OD) = 1.Thus if H1(X,OX) = 0,
then H1(X,OX(−D)) = 0.
The second assertion follows from the long exact sequence obtained by taking cohomology of

0 → OX(−D) → OX → OD → 0.

2. Let π : Blp(X) → X be the blowup with exceptional divisor E. If C ⊂ X is a curve so that each divisor in
|OX(C)| is numerically 2-connected, then each divisor in |OBlpX(π∗C − 2E)| is numerically 1-connected.

3. If X is a K3 surface and C is irreducible curve so that C2 > 0, then |OX(C)| is numerically 2-connected.

4. If X is a K3 surface and L ample, then there is an irreducible curve in |L3|.

The above result 2,3 and 4 are due to Saint-Donat’s work ([8]) on detailed analysis of linear system of a line bundle L on
a K3 surface. Now by taking an irreducible curve C ∈ |L3|, then C is 2-connected and thus π∗C − 2E is 1-connected.
By Ramanujam’s lemma,

H1(X,π∗L3 ⊗ O(−2E)) = 0.

This implies (4).

By the boundedness result, we may consider the Hilbert scheme, which parametrizes closed subschemes in a fixed
ambient space with fixed Hilbert polynomials. In our case, we need

Hilbp(PN ) : Sch(C)op → Set

defined by
T 7→ {Z ⊂ T × PN → T flat over T}
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where the Hilbert polynomial p(t) = χ(3tL) as we can embed each polarised K3 (X,L) into PH0(L3) ∼= PN where

N = (3L)2

2 + χ(OX) − 1 = 9l2 + 1.

By the results of Grothendieck, the functor Hilbp(PN ) defines a fine moduli problem and admits a fine moduli
space Hilbp(PN ). Indeed, the ideal sheaves of closed subscheme in PN with fixed Hilbert polynomial have a uniform
boundedness result: there is a m = m(p) ∈ N such that for any closed subscheme X ⊂ PN with Hilbert polynomial

p(l) = χ(X,OPN |X(l)) ∈ Q[l],

the cohomology H1(X, IX(m)) = 0, which implies such X can be reconstructed from

0 → IX → OPN → OX → 0

after twisting OPN (m). 3 In this way, Hilbp(PN ) can be viewed as a closed sub functor of Grassmannian functor

Grass(p(m), H0(OPN (m)) : Sch(C)op → Set

Grass(p(m), H0(OPN (m)) has a fine moduli space Grass(p(m), H0(OPN (m)). This also implies Hilbp(PN ) has a fine
moduli space Hilbp(PN ) after restricting to the closed locus.

Now we take U ⊂ Hilbp(PN ) the locus parametrizing polarised K3 surface (X,L). 4 Note that there is a natural
group PGL(N + 1) acting on Hilbp(PN ) via changing the coordinate of PN . Clearly, U is a PGL(N + 1) invariant
locus. Therefore, we get a quotient stack

[U/PGL(N + 1)] : Sch(C)op → Set

A very basic results is the representability of quotient stack

Theorem 2.7. Let X be a scheme of finite type and G be a reductive group acting properly and linearly on X, then the
quotient stack [X/G] admits a coarse moduli space X/G.

Here the proper action is equivalent to say

1. the orbit G · x ⊂ X is closed in X.

2. the stabilizer Gx of point x is finite.

Now we are going to show

Theorem 2.8. There are isomorphism of the two moduli stack F◦
g

∼= [U/PGL(N + 1)].

Proof. It is sufficient to show the morphism [U/PGL(N + 1)] → F◦
g will define a injective morphism. This is done by

showing for any two isomorphic families (X,L) π−→ B and (X′,L′) π′

−→ B differs by action of PGL(N + 1). Indeed,
isomorphism says there is an isomorphism f : X → X′ such that

f∗L′ = L ⊗ π∗A, for some A ∈ Pic(B)

Then projection formula shows

π∗(Lm) = π′
∗ ◦ f∗(f∗L′m ⊗ π∗A−m) = A−m ⊗ π′

∗(L′m)

from the commutative diagram
(X,L) −→ (X′,L′)

B

π

π′
.

The natural isomorphism ProjOB
(π∗(Lm)) = ProjOB

(A−m ⊗ π′
∗(L′m)) ∼= ProjOB

(π′
∗(L′m)) differs by PGL(Nm).

3More precisely, X has coordinate ring Sym∗(H0(OPN (m)))/IX where IX is the ideal of symmetric algebra Sym∗(H0(OPN (m))) gen-
erated by H0(IX(m)).

4U ⊂ Hilbp(P N ) is locally closed as it parematrizes smooth object in the family U → Hilbp(P N ) .
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As a corollary, to show the moduli stack F◦
g admits a coarse moduli space, we just need to check the action PGL(N+1)

on U is proper. As the proper action is also equivalent to the proper morphism

PGL(N + 1) × U → U × U, (g, x) 7→ (g · x, x)

it can also be obtained by the following result

Lemma 2.9 (Matsusaka-Mumford [5]). Let R be a DVR, K the fractional field and k = R/m the residue filed. Assume
X,Y are smooth projective variety over K and T ⊂ X ×K Y the graph of an isomorphism. DX ⊂ X and DY ⊂
are smooth divisors. Denote (Xk, DXk

), (Yk, DYk
) and Tk the reductions via R to k such that Xk,Yk are nonsingular

and DXk
is non-degenerate on Xk(repsectively for DYk

). If either Xk or Yk is not uniruled, then Tk is the graph of an
isomorphism between Xk and Yk.
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